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EXECUTIVE SUMMARY 
 

This report is designed to help guide corporate energy buyers seeking to accelerate the development 

and commercialization of technologies that will be needed to achieve a zero-emission, reliability-

optimized electric system.  It is based on detailed case studies of the development of solar 

photovoltaic (PV), on-shore wind, and nuclear generation; a review of the literature on innovation; and 

a report on Forecasting the Cost of Clean Energy Technologies prepared by University of Cambridge 

Professor of Climate Change Policy, Laura Diaz Anadon.  Professor Diaz Anadon is the lead author for 

Working Group III on Climate Change Mitigation for the 6th Assessment Report of the International 

Panel on Climate Change (IPCC).  We describe key questions and considerations for evaluating 

emerging clean energy technologies and interventions to accelerate their development.  

Tabors Caramanis Rudkevich (TCR), with its partner ADL Ventures, Inc., prepared a companion report, 

Strategies for Investing in Clean Energy Technologies, that describes proven and novel ways to support 

the development and deployment of clean energy technologies.  Together, these reports address how 

energy buyers can accelerate the development and availability of technologies that currently are not 

widely available or economically competitive but may be needed to achieve a low carbon energy future.  
This approach is a complement to reductions in corporate greenhouse gas emissions.1  

Why Build an Innovation Model: The limitations of Learning by Doing 

Avoiding the worst impacts of climate change requires achieving net zero carbon dioxide emissions 
globally by the early 2050s, just 30 years from now.2  Such a reduction in economy-wide emissions will 

need to rely on a zero-emission, reliability-optimized electric system that has been expanded to 

support the electrification of transportation, heating, and industrial end uses, is resilient to the effects 

of climate change, including increasingly frequent severe weather, and remains affordable for 

consumers. While deployment of solar, wind, and battery storage technologies represents an essential 

step towards that objective, the further development of emerging technologies is also needed.  The 

system will have to provide reliable, affordable power during extended periods of low wind and solar 

output.  A critical question is:  How can we accelerate the development and reduce the costs of 

technologies that today are not cost-effective or in widespread use and, in many cases, have not been 

demonstrated at commercial scale? 

One unfortunately common answer is to increase the deployment of technologies that currently are not 

cost-effective.  This suggestion is based on an inaccurate interpretation of learning curves – that 

deployment causes learning.  A learning curve is a simple statistical correlation between historical 

production quantities and costs.  It does not imply a causal relationship between deployment and cost 

 

1 TCR also advises energy buyers on how they can increase emission reductions by selecting clean 
electric resources that will displace the output of the highest emitting electric generators based 
on long-term nodal and hourly forecasts of marginal emission rates.  For an illustration of this 
strategy, see He et al., 2021. 

2 IPCC Newsroom Post, 2022; IPCC Summary for Policymakers, 2022. 
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reduction or that a further deliberate increase in the deployment of an early-stage technology will 

produce a corresponding reduction in its costs.   

Most learning curve studies estimate a one-factor progress rate based on a correlation between cost 

reductions and cumulative deployment in a model that does not include other explanatory variables. 

Other two- or multi-factor studies include only a small number of additional variables.  This approach 

has the advantage of simplicity but has little explanatory value.  These studies have an “omitted 

variable bias.”  Omitted variable bias occurs when one or more explanatory variables that have been 

left out of the statistical model have a non-zero regression coefficient and are correlated with a 

variable in the model.  Multiple factors, including research and development (R&D), economies of scale, 

input prices, collaborations, knowledge spillovers from other industries, technological advances, 

changes in global trade and manufacturing, and the accumulation of general knowledge over time, may 

reduce technology costs.  By failing to consider additional variables, most learning curves significantly 

overstate the impact of deployment.  Other studies have shown that time-based models (Moore’s Law) 
perform approximately as well as models based on deployment.3  This similarity suggests that it is 

difficult to distinguish the incremental impacts of deployment from that of variables associated with 

the simple passage of time.   

The argument for deployment rests on an inference that cost reductions are the result of learning by 

doing.  However, detailed bottom-up studies identifying the specific changes that reduced the costs of 

PV and lithium-ion batteries have found that learning by doing played little or no role in reducing their 
costs.4  Other studies have identified learning by doing in the installation or operation of wind 

turbines.  However, these studies found that the benefits of learning by doing did not persist over time, 

often did not transfer between projects, and, at least on their own, had little impact on producing non-
incremental changes in performance.5  

Moreover, two- and multi-factor learning curve studies that include variables for R&D or patent 

production (learning by searching) reduce the explanatory value of deployment.  They reach a 

consistent conclusion that R&D is significant at all stages of technology development and generally 
makes a larger contribution than learning by doing.6 

Accelerating the development of emerging technologies that currently are not competitive or widely 

deployed requires looking beyond learning curves and focusing on how to increase the pace of 

innovation.  Innovation is a process of gathering observations, analytical studies, modeling 

improvements, developing prototypes to validate changes, demonstrations in an operational 

environment, gathering additional performance data from deployments, and cycling back to 

incorporate new learning into the process.  Accelerating the development of an emerging technology 

 

3 Meng et al., 2021; See also Nagy et al., 2013 and Lafond et al., 2018. 

4 Pillai, 2015; Nemet, 2005; Kavlak et al., 2018; Trancik et al., 2020; Bollinger & Gillingham, 2019; and 
Ziegler et al., 2021. 

5 Nemet, 2012 and Anderson et al., 2019. 

6 National Academies of Sciences, Medicine, and Engineering, 2016; Jamasb, 2007; Rubin et al., 2015. 
See also Louwen et al. 2022 and Zhou & Gu, 2019. 
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requires recognizing its stage of development and understanding the issues that need to be addressed 

to advance its development. 

Buyer Strategies at Different Stages of Technology Development 

Emerging technologies move through different stages of development.  These stages are associated 

with Technology Readiness Levels (TRLs), originally a nine-level taxonomy that NASA developed for the 

space program.  In 2020, the International Energy Agency modified and extended TRL classifications to 

11 levels, recognizing that commercially available technologies may need additional development or 
support to be integrated into existing systems and broadly adopted.7  Stages of development and 

related TRLs include: 

 Research:  Concept development and laboratory experimentation (TRLs 1 – 3) 

 Development:  Investigations of achievable performance, testing prototypes in laboratory 

conditions, validating components in semi-integrated systems, and producing and 

demonstrating early prototypes in a relevant environment (TRLs 4 – 6) 

 Demonstration:  Systems or prototypes verified in an operational environment, followed by 

production and validation of full-scale systems in final commercial form (TRLs 7 – 8) 

 Deployment:  Early adoption occurs in this stage.  The technology is commercially available and 

may have been deployed to multiple users, but needs evolutionary improvements to become or 

remain competitive and/or further efforts to enable its integration at scale  

 Diffusion:  At this point, the technology is mature, further growth is predictable. 

It is important to distinguish technologies that are in the development or demonstration stages from 

those that have reached the deployment or diffusion stages. 

For technologies in the development or demonstration stages (TRLs 4 – 8) and technologies that are far 

from becoming competitive, the primary focus should be on development, demonstration, and/or 

innovation to reduce costs and improve performance.  Some early-stage technologies may benefit from 

moderate levels of deployment or sales in niche markets to generate revenue for continued 

development and test improvements.  However, buyers and policy makers should be cautious about 

accelerating the deployment of early-stage technologies: 

 Subsidizing deployment of technologies that are not cost competitive can be expensive and 

unsustainable.  This happened with California’s short-lived 1983 to 1985 standard offer 

contracts for wind generation and in Japan’s early efforts to subsidize residential rooftop 
solar.8   

 Subsidizing deployment may divert resources from more productive R&D activities.  The 
1983 to 1985 California wind subsidies coincided with a decline in wind technology patents.9 

During the rapid growth of U.S. wind generation from 2004 to 2009, wind energy costs 

 

7 International Energy Agency, 2020, Energy Technology Perspectives 2020. 

8 See chapter 3, section 3.3 and chapter 2, section 2.2.3 of Full Report. 

9 Nemet, 2009. 
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increased, and technology development stagnated.10  Higher feed-in tariff prices under 

Germany’s 2000 Renewable Energy Law (Erneuerbare-Energien-Gestz) provided over 200 billion 

euros in PV subsidies but, contrary to expectations, was not associated with an increase in 
patent activity.11 

 A rapid increase in deployment can disrupt supply chains and industry structures.  As 

European feed-in tariffs increased the demand for PV, the price of polysilicon, a basic input, 

spiked, resulting in a ten-fold price increase from 2003 to 2008.  This price increase 

undermined the financial condition of the German PV firm, Q-Cells, which had been world’s 
leading manufacturer.12   

As an alternative to greater deployment, buyers should consider the use of prizes, conditional 

purchase commitments, advanced market commitments, and support for R&D including joint 

development agreements, test beds, and accelerator programs, as described in our companion report, 

Strategies for Investing in Clean Energy Technologies. 

Deployment is a unique stage in a technology’s development.  If the technology is becoming 

competitive, additional deployment may induce entrepreneurs to increase their investments in R&D to 

become or remain competitive and create economies of scale, which in a competitive market may 

reduce prices.  However, buyers need to be aware that in paying for accelerated deployment they may 

be assuming risks and costs that the technology’s investors would assume in an efficient market 

without externalities. 

Market Dynamics: Lessons Related to Risk and Displacing Incumbents 

In the 1970s, global energy markets were disrupted by the Arab oil embargo and later reductions in oil 

supplies related to the Iran – Iraq War.  Today, global markets face comparable disruptions and risks 

given Europe’s dependence on Russian oil and natural gas, a Russian monopoly on the supply of the 

high-assay low-enriched uranium (HALEU) fuel needed for advanced reactors, China’s dominance of the 

solar energy industry, the world’s dependence on developing nations and China for critical minerals, 

and the potential impacts of a changing climate.  Investors should take such risks into account both by 

seeking to develop a range of options and accounting for the real option costs of large capital-intensive 

investments.   

The ongoing transformation of the U.S. electric generation fleet – from one in which electricity was 

primarily provided by coal-fired generation to one powered primarily by natural gas, wind, and solar 

resources – illustrates the potential for rapid adoption of lower cost clean energy resources.  At the 

same time, the continued operation of coal-fired generators that would be uneconomic at markets 

prices shows how incumbents can use regulation to protect their market share.  

 

 

10 See chapter 3, section 3.6 of Full Report. 

11 Böhringer et al., 2014; Böhringer et al., 2017. 

12 Nemet, 2019. 
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How Technology Characteristics Impact Progress 

Based on our case studies of PV, wind, and nuclear generation, we identified five sets of technology 

characteristics, each associated with a typical pattern of innovation.  These patterns may help identify 

opportunities to accelerate the development of technologies with similar characteristics. Table ES-1 

summarizes the characteristics and related innovation patterns. 

 

Table ES-1: Technology Characteristics and Innovation Patterns 

Technology Characteristics Typical Innovation Patterns 

Modular – encourages component innovation, 

Granular – allows rapid low-cost 

experimentation, and  

Mass-Produced – enables economies of scale 

and knowledge being embedded in production 

equipment, e.g., PV modules, LED lighting 

 

Rapid: Innovation occurs through: 

• Integration of scientific advances  
• Independent component innovation 
• Supply chain coordination and design 

standardization 
• Manufacturing process improvements 
• Economies of scale enabled by embedding 

knowledge in production equipment 

Moderately complex standard platforms – 

many components, requires integration of key 

components, e.g., wind & gas turbines 

 

Moderate: Innovation occurs in new models: 

• Basic design persists, e.g., three-blade, 
upwind facing wind turbine developed in 
1970s 

• Integration of component innovations 
• Upscaling unit size 
• Standard platform adapted to varying 

conditions13 

Customization of construction or installation 

– affects components and processes for 

multiple technologies, e.g., construction of 

large nuclear reactors, wind farm site work, 

installation of residential rooftop PV 

 

Variable: Differences in conditions limit the 

transferable knowledge and can retard the 

diffusion of innovation 

• Equipment is modified to simplify 
installation 

• Workforce development 

High design complexity – requires tight 

integration of critical components and system 

level design, e.g., nuclear power, commercial 

aircraft 

Long: Innovation introduced in new standard 

designs: 

• Innovation requires lengthy periods of 
design, testing, and systems integration 

 

13 The term “platform” is used to identify a technology with standard configuration that can be 
installed in and adapted for different local conditions. 
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Technology Characteristics Typical Innovation Patterns 

High regulatory complexity – environmental, 
safety, and other regulatory issues affect 
design, deployment, and/or the ability to 
make changes, e.g., nuclear, potentially 
hydrogen storage at scale 

 

Impeded: Designs & deployment plans subject 
to detailed regulatory requirements, review, 
and litigation 

• Designs and deployment plans are 
completed up-front 

• Regulators may have access to design 
and/or testing 

 

For PV, wind, and nuclear, we used these innovation patterns to identify specific information 

exchanges that have the potential to be used, expanded, or optimized to accelerate innovation.  Other 

technologies with similar characteristics might benefit from comparable exchanges, although we have 

not extended our analysis to additional technologies. 

Our approach differs from others14 in that it is based on detailed case studies of key clean energy 

technologies and focuses on identifying innovation patterns and opportunities to accelerate the 

development of technologies with different characteristics.  

A Model for Clean Energy Innovation 

The 2022 Inflation Reduction Act significantly increased support for the deployment of clean energy 

technologies.  If successful, such support could move the U.S. much of the way towards meeting its 

near-term carbon reduction targets.  However, the possibility that tax credits may disproportionately 

benefit mature technologies, with the effect of locking out potentially superior emerging alternatives, 

underscores the value of a corporate clean energy innovation model.   

The innovation model combines a set of key questions and related considerations to guide corporate 

decisions regarding interventions to accelerate the development of technologies needed for a zero-

emissions, reliability-optimized future.  There are five high-level questions.  Each should lead buyers to 

examine a set of additional considerations reflected in the framing of the question. 

 Are the technologies that may be required to achieve a reliable zero-emission electric system 

being developed in a timely manner? 

 What is the probability that a technology under consideration will successfully compete for a 

role in an affordable, reliable, low carbon future? 

 Can the pace of innovation for this technology be accelerated such that it can more effectively 

compete? 

 What risks and unknowns could impact the technology’s development and commercial 

opportunities? 

 Considering the alignment of a broader set of factors, is the technology on a path that will 

enable it to be successfully adopted and integrated into the power system? 

The last of these questions recognizes that a technology’s adoption, integration, and widespread use 

depends on more than its cost and performance.  Diffusion of the technology may require aligning 

 

14 See Abernathy & Utterback, 1978; Davies, 1997; Huentler et al., 2016; and Malhotra & Schmidt, 2020. 
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organizational and supply chain capabilities, user preferences and demand, financial resources, 

regulation, industry institutions, standards and infrastructure, and pursuing development paths along 

each of these dimensions.  Additional questions are provided for technologies at different stages of 

development. 

Greater data availability, improvements in information technology, and advances in modeling and 

virtualization may be accelerating the pace at which information and learning is exchanged and 

optimizing the tempo of innovation.  This is a new innovation path that we call learning by feedback.  

It differs from learning by doing in that it relies on gathering sufficient data to analyze potential 

improvements but is not directly related to maximizing deployment.  We suggest further research on 

this topic. 

Case Studies: Solar PV, On-shore Wind, and Nuclear Energy 

The report includes detailed case studies of the development of PV, on-shore wind, and nuclear energy.  

Each case study includes its own more detailed executive summary. 

The study of PV traces the development of the technology from its invention at Bell Labs in 1954 and 

early applications in the space program to the present.  It addresses the growth of Chinese PV firms, 

which today control more than an 80% market share at each stage in the production of PV modules.  

Chinese PV firms got started in the 1990s by importing talent, technology, and Western capital.  They 

were prepared for and benefited from the growth of the European market in the 2000s.  And, unlike 

leading PV companies in Germany and Japan, the Chinese responded to increasing silicon prices by 

developing their own domestic supplies.  Starting around 2010 and coinciding with the increasing 

market share of Chinese PV companies, the industry experienced a rapid decrease in manufacturing 

costs, more than 15% per year on average.  The reduction was driven by a combination of 

improvements in crystalline silicon PV technology and reductions in manufacturing costs.  It reflected 

increased collaboration between manufacturing partners and even competitors facilitated by the 

development of a cluster of vertically integrated Chinese companies.   

The case study of on-shore wind focuses on the period after the development in the late 1970s of 

three-blade, upwind facing turbines, which remains a basis for today’s standard turbine platforms.  It 

traces both technological advances and the impacts of deployment subsidies, noting that periods of 

accelerated deployment often have not coincided with improvements in the technology.  For example, 

U.S. and, as a result, global additions of wind generation capacity increased dramatically from 2004 to 

2009.  However, this was also a period in which the per-megawatt cost of wind turbines increased and 

technological progress stalled.  In 2012, a resurgence of technological improvements, accompanied by 

the reversal of a trend toward declining wind site quality, started a multi-year trend of declining 

average per-megawatt capital costs and increasing average capacity factors.  Newer models were taller 

and had much wider rotor diameters, enabling operation at lower wind speeds.  The per-megawatt 

capital costs also declined back to 2003 levels.  After several years of steady decline, the average 

levelized cost of energy (LCOE) for U.S. on-shore wind generators has not decreased since 2018.  This 

stagnation is a combination of two factors – the average capacity factor flattened out at about 40% and 

capital costs ceased to decline.  Although experts expect a further decline in costs, it remains to be 

seen whether this reduction will materialize. 

Nuclear is a highly complex technology, constructed on-site over multiple years, and subject to 

significant regulatory oversight.  The case study for nuclear power examines industry experience 
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across multiple countries.  Costs have varied by country and period but have generally increased as 

more reactors have been deployed.  The best case for controlling nuclear construction costs has been 

in South Korea.  Korean nuclear plant construction has been undertaken by a single utility, sequentially 

constructing standard designs, in multi-unit facilities.  For a time, this led to a small improvement in 

overnight construction costs, which do not include financing costs or reflect construction durations.  

However, when one accounts for the ten-year or longer construction durations of recent Korean 

reactors, doubling the construction durations of earlier plants, the trend is one of increasing total 

plant costs. 

Forecasting the Cost of Clean Energy Technologies 

Professor Diaz Anadon’s report describes energy technology innovation as a complex adaptive process 

consisting of interconnected stages and feedbacks.  She describes two main approaches to forecasting 

technology costs: expert-based approaches, which may be particularly valuable for emerging 

technologies in the early stages of the innovation process, and model-based forecasts, including 

models based on deployment or on time.  Her report includes the following key observations: 

 Given the complexity, interdependencies, and uncertainties characterizing technology 

innovation, energy technology cost forecasting should, when at all possible, be conducted on a 
probabilistic basis.15  

 Using past data, when available, in a probabilistic manner, model-based forecasts have out-

performed expert elicitation.  Expert-based methods of forecasting energy costs have resulted 

in overconfident and in many cases pessimistic estimates. 

 The use of model-based approaches does not imply attributing all improvements to learning by 

doing.   

 Not all energy technologies evolve in the same way.  Some of the differences may be 

attributable to changes in material or input costs, technologies having a high fraction of 

variable and fuel costs that experience increases because lower-cost resources are extracted 

first, differences in the characteristics of technologies such as complexity or granularity, or 

differences between the development of newer and dominant technologies within a particular 

category.   

The report also summarizes recent research on patterns of innovation for technologies with different 

characteristics. 

 

 

 

 

 

 

 

15 Diaz Anadon, Appendix B to the Full Report; Diaz Anadon et al., 2017. 
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